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                    Really frustrated systems 

Outline  
The phase diagram of the Hubbard model on the  
                  Honeycomb lattice  

Searching for a spin liquid phase in the intermediate 
coupling region U/t~4  (recently proposed)  

How to live with the sign problem? 

Recent results on a frustrated model: 
Lanczos steps with variance extr.  J1-J2 model.   



Graphene  

  

Lanzara group, PRL’10 
Almost perfect Dirac spectrum:  
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What happens in the Hubbard model? 
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In old days (S. Sorella and E. Tosatti EPL’92) 
the transition was supposed to be standard HF:  

1/U =
N(E)
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∫ dE   where N(E)∝E

and       1 /Uc =
N(E)
E0

∞

∫ dE   and more importantly:

m∝ (U −Uc )  i.e. non standard 

Uc /t~(2.23 HF) +correlationà 4.5(5) 

(semi)metal  AF-insulator 



Then the spin liquid theory become popular… 
 
A zero temperature insulating spin state with  
 
  no magnetic order (classical trivial) 
  no broken translation symmetry (less trivial): 
 
  no Dimer state 
(Read,Sachdev) 
 
 is a spin liquid  

Neel 



Recent exciting result on the Hubbard model… 
Meng et al. (Muramatsu’s group), Nature 2010.  

No broken symmetry but a full  gap at U/t~4… 
 this is an RVB phase: a T=0 S=1/2 paramagnet  



The auxiliary field technique based on the 
Hubbard-Stratonovich (Hirsch) transformation 
provides a big reduction of the sign problem as: 
  
1)  There is no sign problem for U=0.  
2)   At half-filling there is no sign problem 
     (standard technique has huge sign problem). 
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With this transformation the true propagator  
is a superposition of ‘’easy’’ one-body propagators: 
ψτ = exp(−Hτ ) ψT = Uσ

σ{ }
∑ (τ , 0) ψT

and, if ψT  is a Slater determinant, Uσ (τ , 0) ψT  can be evaluated.

We can compute any correlation function O with standard MC
with weight: W[σ ]= ψT Uσ  (τ , 0) ψT :

                    ψ0 O ψ0 =
ψτ /2 O ψτ /2

ψτ ψT

=

W[σ ]
σ{ }
∑ O[σ ]

W[σ ]
σ{ }
∑

                             O[σ ]=
ψT Uσ (τ , τ

2
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, 0) ψT

ψT Uσ (τ , 0) ψT
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and

C(Lmax ) =

SR •

S )R  at the maximum distance

In the thermodynamic limit Nà∞  
       C(Lmax) = SAF/N= m2  

In order to establish a finite order parameter m 
we compute the following quantities in a finite  
cluster LxL=N/2  (N=#sites, i.e. 2 sites/unit cell): 



Finite size scaling up to 2592 sites (previous 648)! 

Sci. Rep. 2012,2,992  S. S. , S. Yunoki, and Y. Otsukay (2012)  

← 7.1σ

  



Stability of the fit  (unit x 104 ) U/t=4 

Type of fit   SAF/N    #σ 

Cubic all   6.4(9)   7.1 
  Cubic 
 no  L=6   

 8.2(20)    4.8 

  Cubic  
 no  L=36 

 5.5(12)    4.3  

Quadratic 
    L>6  

  1.92(53)   3.6 

    L>9   4.67(97)   4.8   
    L>12    8.2(14)    5.8    

The fit is not perfect but SAF/N is non zero 



How to do so much larger clusters? 

The basic operation in Monte Carlo is updating 
a   2Lx2L matrix g: 

gij
n+1 = gij

n + ai (g
n )bj (g

n )
The cost for computing both a and b given g 
                               is ~2L<<L2

The cost for a QMC update requires only  gii



gij
n+krep = gij

n + ai (g
n+k )bj (g

n+k )
k=0

krep−1

∑ = g+ ABT

One can “delay the updates” krep times  

A speed-up of about 24  in the K-computer. 
SS; F. Mancini, A. Avella, Eds.; Springer, 2013 



  Now also in germany agree that the spin liquid  
  phase is no longer stable against AF order 

From  F. Assaad&I.F. Herbut  ArXiV :1304.6340   
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The best fit gives a SM-AFMI transition at 
       Uc/t=3.869(13)        β=0.80(4) 

The AF magnetic order m vanishes continuously     
m∝ (U −Uc )

β  with β<1 (e.g. β~1/3 for QCP)



This does not exclude the spin liquid for U/t<~3.9  

We study the density-density correlation ρ(r)

Due to commensurate Friedel oscillation  

ρ(r) ~ exp(2kFr) / r
4

in the semimetallic region U < 3.9 



-0.28

-0.24

-0.2

-0.16

-0.12

-0.08

-0.04

 0

 0.04

 0.08

 0  0.05  0.1  0.15

 L
4  l

 (L
m

ax
) 

 1/L 

 U/t 
 3.6 
 3.7 
 3.8 
 3.9 
 4   

If we plot r4 x Exponential à 0 in the insulator. 
The  critical point is Uc  |   L

4ρ(r = Lmax )→ 0 for L→∞

We clearly see that  Uc is between 3.8 and 3.9 
with this definition, now exactly consistent with m.  



U/t 

3.2 4.6 Uc ~3.87 

(semi)metal  AF-insulator ?? 

3.4 4.3 

Spin Liquid SM AFI 

U/t 

Previous results with 648  Sites:   

New phase diagram with large scale simulations  



First results on a model without sign problem: 
Much larger size à  spin liquid unlikely  
or almost gapless in  an very  small region. 
Certainly at the critical point we have a gapless SL. 
As a consequence of the Murphy’s law   
‘’No interesting results can be obtained with a  
fermionic model without sign problem….’’ 
but this is true only for S=1/2 SU(2) models so far   

The transition is clearly continuous and we found   
a critical exponent  δ =~0.8  >>1/3 (standard ?)  
The first continuous metal-insulator transition model. 
 
S.Sorella Y. Otsuka and S. Yunoki, Sci. Rep. 2012,2,992   



J2 / J1

 
H = J1S


i • S

j

ij
∑ + J2S


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j

ij
∑ ,(J1, J2 > 0)The                 Heisenberg Model J1 − J2

spin liquid 
J1	
 

J2	
 

J1 − J2

Which kind of spin liquid? 

H.-C. Jiang et al. PRB 86, 024424 (2012)	



DMRG results show gapped Z2 QSL 



ground state S=0	



projected fermionic 
RVB state 

ΨV = ΡGutz. ψ MF

S=1            excitation 
ΨS=0 ΨS=1,(π ,0)

two spinons, 
(π ,0)

(π ,0)

2. Variational Wave Function  

hopping + pairing 
Δ
x2 − y2

+ Δ xy

Z2 spin liquid 

(π ,0)

Gapless spin liquid phase in the 	
 J1=J2	
 Heisenberg model  

A genuine fingerprint is a gapless mode at (π,0) 
N.B. a gapless antiferromagnet has a gap at (π,0)   



To improve the 
variational wave 
function: 
Lanczos steps 

p = 0,1,2

Gapless spin liquid phase in the   	
 	
 	
 	
 	
 	
 	
 Heisenberg model  J1 − J2

variance extrapolation 

Not So Good WF 
Good WF 

H 2 − H 2

Random WF 

Effect of different WF 
With QMC scaling Lp+2 

S.S. PRB ‘01 



3. Results Gapless spin liquid phase in the   	
 	
 	
 	
 	
 	
 	
 Heisenberg model  J1 − J2

exact on 6x6 

exact on 4x4 

larger size, linear fitting 

on 4x4 lattice, quadratic fitting 

   
 
 
 
 
 
 
 
 
 
 

Perfect linearity 
is obtained for  
large sizes and  
exact on 6x6 

The wf. seems 
more accurate for  
larger clusters!!  



A new (measurable) effect:  zero spin-gap at (π,0)   
W. Hu F. Becca and S.S. arXiv:1304.2630 



J2/J1 

0      0.1     0.2     0.3     0.4     0.5     

In an antiferromagnet the sign of the ground state  
wave function is given by a simple rule (Marshall): 
                     Sign= (-1)# spin up in one sublattice 

The average sign relative to the Marshall sign (6x6). 



We are temped to make the following simple  
conclusion: 
 

When there is no sign problem it is  
     hard to stabilize a spin liquid. 

Spin ½ systems are equivalent to bosonic  
systems and they cannot avoid Bose  
condensation at T=0 without being protected by  
the sign, the key ingredient that distinguishes  
a “classical” from a quantum wave function. 
 



This is indeed a quite precise  statement… 
Given a wave function    ψ(x)  define:
                 ψS (x) = Sign ψ(x)[ ]
  In any trivial classical state 
              ψS

A+B (x) =ψS
A (x)×ψS

B (x)
 

This means that a spin liquid is possible only  
when  the sign is entangled and protects from  
trivial boson condensation.  

For instance  Marshall sign  (−1)Number of spin up in one sublattice


