Spin liquid phases 1n strongly correlated
lattice models

Sandro Sorella
Wenjun Hu, F. Becca
SISSA, IOM DEMOCRITOS, Trieste
Seiji Yunoki, Y. Otsuka

Riken, Kobe, Japan (K-computer)

Williamsburg, 14 June 2013




Outline

The phase diagram of the Hubbard model on the
Honeycomb lattice

Searching for a spin liquid phase in the intermediate
coupling region U/t~4 (recently proposed)

Really frustrated systems

How to live with the sign problem?

Recent results on a frustrated model:
Lanczos steps with variance extr. J1-J2 model.
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- Lanzara group, PRL’10
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What happens in the Hubbard model?
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In old days (S. Sorella and E. Tosatti1 EPL’92)
the transition was supposed to be standard HF:

(semi)metal AF-1nsulator

U./t~(2.23 HF) +correlation—> 4.5(5)
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and 1/U, = f N;:E)dE and more importantly:
0

mo (U -U,.) 1.e.non standard



Then the spin liquid theory become popular...

A zero temperature isulating spin stage with
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no broken translation symmetry (less trivial):

no Dimer state
(Read,Sachdev)
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Recent exciting result on the Hubbard model. ..
Meng et al. (Muramatsu’s group), Nature 2010.
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No broken symmetry but a full gap at U/t~4...
this 1s an RVB phase: a T=0 S=1/2 paramagnet



The auxihiary field technique based on the
Hubbard-Stratonovich (Hirsch) transformation

provides a big reduction of the sign problem as:

The discrete HST (Hirsch '85):

, Eexp[ﬂa(rz -n )]

cosh(A) =exp(g/2)

exp[g(n, —n )] =



With this transformation the true propagator
1S a superposition of ‘’easy’ one-body propagators:

[y, ) =exp(-HT)|y,) = Y U, (7,0)|y,)
{o}

and, if |y, ) is a Slater determinant, U, (7,0)|y, ) can be evaluated.

We can compute any correlation function O with standard MC

with weight: W[o]=(y,|U, (t,0)|y,):
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In order to establish a finite order parameter m
we compute the following quantities 1n a finite
cluster LxL=N/2 (N=#sites, 1.e. 2 sites/unit cell):

S, /N =(7) where i =1/N| 315, - 35,
| A B i

and

max

C(Lyy,) =(Sg*S,) at the maximum distance

In the thermodynamic limit N> o0
C(L,..) =S, /N=m?

max



Finite size scaling up to 2592 sites (previous 648)!
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Sci. Rep. 2012,2,992 S. S., S. Yunoki, and Y. Otsukay (2012)

Square AF order parameter




Stability of the fit (unit x 10%) U/t=4
ot | SN e

Cubic all 6.4(9) 7.1
Cubic 8.2(20) 4.8
no L=6
Cubic 5.5(12) 4.3
no L=36
Quadratic 1.92(53) 3.6
L>6
L>9 4.67(97) 4.8
L>12 8.2(14) 5.8

The fit 1s not perfect but S, /N 1s non zero



How to do so much larger clusters?

The basic operation in Monte Carlo 1s updating
a 2Lx2L matrix g:

n

g;" =g;+a,(g")b,(g")

The cost for computing both a and b given g
is ~2L<<L’
The cost for a QMC update requires only g,



One can “delay the updates” k .., times
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A speed-up of about 24 1n the K-computer.
SS; F. Mancini, A. Avella, Eds.; Springer, 2013



Now also 1n germany agree that the spin liquid
phase 1s no longer stable against AF order
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The AF magnetic order m vanishes continuously
mo (U -U.)’ with <1 (e.g. B~1/3 for QCP)
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The best fit gives a SM-AFMI transition at
U /t=3.869(13) 3=0.80(4)



This does not exclude the spin liquid for U/t<~3.9
We study the density-density correlation O(r)

Due to commensurate Friedel oscillation

p(r) ~exp(2k,r)/ r

in the semimetallic region U < 3.9



If we plot r* x Exponential = 0 in the insulator.
The critical point is U, | L'o(r=L_,,)— 0 for L —

0.08 | Uk _
36 —H—
0.04 | 37 —6— ||
38 —A—
0| 3.9
4
_ -0.04 ]
%
€ -0.08 ¢
=)
o -0.12} ]
<
-
-0.16 | -
02} |
024 | -
028 | _
0 0.05 0.1 0.15

1/L

We clearly see that U_ 1s between 3.8 and 3.9
with this definition, now exactly consistent with m.



New phase diagram with large scale simulations

(semi)metal 29 AF-1nsulator
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Previous results with 648 Sites:
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First results on a model without sign problem:
Much larger size = spin liquid unlikely

or almost gapless in an very small region.
Certainly at the critical point we have a gapless SL.

As a consequence of the Murphy’s law
“’No 1nteresting results can be obtained with a
fermionic model without sign problem....”

but this is true only for S=1/2 SU(2) models so far

The transition 1s clearly continuous and we found
a critical exponent 0 =~0.8 >>1/3 (standard ?)

The first continuous metal-insulator transition model.

S.Sorella Y. Otsuka and S. Yunoki, Sci. Rep. 2012,2,992
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The J,—J, Heisenberg Model }J = Z]ji .3*,- + ZJZS’Z- ° :S:J-,(JI,J2 >0)
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H.-C. Jiang et al. PRB 86, 024424 (2012)



e Function

® ground state S=0

R 0=reclv

® S=1(m,0) excitation

two spi 0
W) W} ¥omo)

e A genuine fingerprint 1s a gapless mode at (,0)
N.B. a gapless antiferromagnet has a gap at (w,0)



Gapless spin liquid phase in th

variance extrapolation
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E(S) per site at J2/J1=0.5

Gapless spin liquid phase in thejl’A n
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Perfect linearity
1s obtained for
large sizes and
exact on 6x6

The wt. seems
more accurate for
larger clusters!!




A new (measurable) effect: zero spin-gap at (.,0)
W. Hu F. Becca and S.S. arXiv:1304.2630
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In an antiferromagnet the sign of the ground state

wave function 1s given by a simple rule (Marshall):
Sign: (_ 1 )# spin up in one sublattice

The average sign relative to the Marshall sign (6x6).
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We are temped to make the following simple
conclusion:

When there 1s no sign problem it 1s
hard to stabilize a spin liquid.

Spin %5 systems are equivalent to bosonic
systems and they cannot avoid Bose
condensation at T=0 without being protected by
the sign, the key ingredient that distinguishes

a “classical” from a quantum wave function.



This 1s indeed a quite precise statement...
Given a wave function (x) define:

Yy (x) = Sign| y(x)]

In any trivial classical state

Wi (x) =g (X) x Py (x)

(_ 1)Number of spin up in one sublattice

For instance Marshall sign

This means that a spin liquid 1s possible only
when the sign 1s entangled and protects from
trivial boson condensation.



