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Introduction

! Reducing the complexity of the many-body electron problem
significantly below that of the wavefunction has been a major goal

since the early days of QM
! The most successful realization of this program has been obtained

with DFT (Kohn, Hohenberg and Sham):

Lo(r,ry,.nry) " #.(r) (i=1,...,N)

! However, difficulties limit the accuracy of DFT: xc-functional
approximation (self-interaction error, strong correlations)



Energy [Hartree]

Conceptually DFT difficulties can be attributed to the Mean Field form of the theory

i | From Mulliken (1928) to Heitler-London (1927)
] (1 determinant to 2 determinant)

KS orbitals: Tareory=$ # @ ("
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Misses entanglement due to correlations:

T Natural orbitals (NO):  p(r,r")= Y ne,(r ), (r")

Different ways to overcome the difficulties have been explored:

! 1-DM functional theories: NO and occupation numbers (NOFT) face a similar
difficulty of DFT with xc-functional of the 1-DM

! 2-DM functional theories: the functional is known explicitly but one has to deal
with the N-representability problem (in principle QMA hard)



Occupation probabilities-natural orbital
functional theory (OP-NOFT) (with R. Gebauer
(ICTP) and M.H. Cohen (Rutgers & Princeton))

! Retain conceptual simplicity of single-particle theory by using NO
(NSO) (to be determined self-consistently) and their joint
occupation probabilities (OP) to represent 1-DM (/) and 2-DM (")

! Exploit explicit form of the N-particle wavefunction to get physical
insight and devise valuable approximations for !
(forward vs inverse approach)



NSO and seniority
W(x,x,,....x) = ZC G AR (nEnln.‘l“'nN/Z)
©, = W;(—I)P P{gon1 (Do, (x,)..0, (xy )} (n=npn,..n,)

I Pair difference theorem (PDT): determinants differ by pairs of NSO

! Limit consideration to even N global singlet (S=0)

! The seniority number A (G. Racah (1943)) is the number of singly occupied
states in a Slater Determinant
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(np =2) (= 3) (npn=2) (npn =4)
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If in the ground state all NSO are occupied (however small their occupation) in
the A=0 sector, only seniorities A=4n are allowed by PDT, i.e. A=0,4,E (A=0:

pairs only, A=4: 2 broken pairs,...)

Consequences:
I Convergence in seniority is faster with NSO

l For 2 electrons A=0 is exact



p(z’, )

1-DM

= N [dzy---don (2!, z0,-- ,xN)U*(z, 29, -
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m(xl,z5;z1,72) = N(N — 1)/dIg"'d$N

U(zy, x5, - N ) O (21,22, -+ ,TN),

m(r,Th; 11, T2) = 74(r], 1511, 12) + 7°4(r], 15 11, T2)

m(ry,rh;ry, o) = QZPH(U) [26:(r)) B (1) Pi(r1)$5(r2)

J
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mel(xy, vpire, 1) = 3 0 Y 7 s(ik)s(7K)pisa (K)pid . (7K)
1#7 k

¢i(r1)¢i(r2) d;(r1)¢;(ra). (3)

sup(p1(i) +p1(j) — 1,0) < p1a(ij) < p1(<)
N — C2u: v sup(p1(z) +p1(7) + p1(k) — 1,0) < p11(ij) + p11(ik) + p1a(5k)
P11(33) = 2o Caltonts 23" puid) = (V - 2 () ©)
J(#7)

pir.1(ik) = C% Complexity is in 7%



Complexity is reduced in 2 steps

(e, rhire,ra) = Y Y s(ik)s(iK)pri2 . (iK)pri-.. (7K)
i) k

i(r])di(r2)9;(r1)d;(r2). (5)
s(ik)=s(i) s(jk)=s())
SgnRule s@@)=s(j)="'1ifi,j" NI12;, s())=1 s(j)="'21ifi" N/I2,j>N/2
orviceversy, s(i)=s(j)='11ifi,j>N/2
Scalar product: Y pi,(k)pit’, (jK) =pis (i) po; (i/)E(ij) with 0 <EGj) <1

k(=ij)

P, (i) = ZCn Vo (l=v, )= 2 p,, ,(ik) A 2-state OP!

k(=)

So far everything is exact (for A=0), or at least variational; all the complexity is

in &()

z P K)p, (k) z pii(ik) i (k)
é(l]) = k(=ij) . . : ;;:(IJ) —~ k(=ij)

( z P11..1(ik)] ( Z P11..1(jk)} ( Z Pu(ik)J ( Z Pll(]k)]

k(=ij) k(=ij) k(=ij) k(=ij)




Approximate 2-DM satisfies:

/dr2 m(r',ro;r,r5) = (N — 1)p(r,r’") and

/dl‘l dry m(ry,roir1,I)w(r12) = 0,



(A=0) OP-NOFT functional

E= 2(. hiipl(i) + ( pll(lj) ;blﬁz‘]ij ! KU% ( | pijo2 (lj)pglz (l])s(l)s(])&(l])KU

@,(r)e;(r,)e,(r)e,(r,)

J,=(00,|v|09,)=[drar, -
,

@,(r)e;(r,)p,(x)e,(r,)

ha

K, = <(pi¢j‘ ""(Pj(/’,‘> = J‘drl dr,

Computational cost scales with size like HF energy minimization (but
with a larger prefactor due to the larger number of NO that need to be
included)

The infimum of E subject to constraints and sum rules gives the
ground state energy. It can be found via damped CP dynamics (Car
and Parrinello 1985):



H, molecule
basis set: ce-pVTZ

How well does it work?
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For 4 electrons & is exact

but A=0 is not
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2 electrons

For 2 electrons A=0 is exact and
our formula reduces to the exact
Lowdin-Shull (1958) form (which
depends only on 1-OP)

HF
basis: 6-31G**
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10 electrons: the first serious test of the approximations
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A more challenging case: Hg

Linear HS chain

basis set: 6-31G**
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The importance of correlation
can be gauged from the
occupation numbers and the
Von Neuman entanglement
entropy

Symmetric dissociation curve
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Linear Hg chain
occupation numbers and entanglement entropy
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e-e pair correlations

Pair correlation function

o(rr) = m(rx)/(n()*n(r))

I Ll |

= parallel spin
= anti-parallel spin

10 15

Pair correlation function
o(rr) = m(r.r)/(n()*n(r"))

= parallel spin

= anti-parallel spin
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Pair correlation function

o(rr) = T (r.r)/(n@)*n(r))

T 7

= parallel spin
= anti-parallel spin
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Pair correlation function

2(rr) = T (rr)/(n@)*n())

“ T I T I T
= parallel spin

i = anti-parallel spin
|
15 |
| |
|
1 —— H
| |
|
|

05
|
L |
| ——
0 . | \ J L
5 10 15




energy (H)
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N,: an even more challenging case

N2
basis: 6-31G**

N2

basis: 6-31G**
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From G. Scuseria and co. JCP (2011)



Concluding remarks

Beyond A=0: A=4 contribution could be added perturbatively or fully
self-consistently. This would retain polynomial scaling but with
higher power than HF.

Energy functional minimization: forces on nuclei, structural
optimization, ab-initio MD

Applications to condensed matter, e.g homogeneous electron liquid:
would correlation be described appropriately? Wigner transition?
What about Mott insulators?

Models with an effective attractive (instead of repulsive) interaction:
The sign analysis would need reconsideration. \Would the
approximation that we make on the 2-DM still keep the possibility of
a macroscopic eigenvalue (pairing): how would that appear in the
structure of the 2-DM?



